A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties—the FuelHealth project
نویسندگان
چکیده
Biodiesels represent more carbon-neutral fuels and are introduced at an increasing extent to reduce emission of greenhouse gases. However, the potential impact of different types and blend concentrations of biodiesel on the toxicity of diesel engine emissions are still relatively scarce and to some extent contradictory. The objective of the present work was to compare the toxicity of diesel exhaust particles (DEP) from combustion of two 1st-generation fuels: 7% fatty acid methyl esters (FAME; B7) and 20% FAME (B20) and a 2nd-generation 20% FAME/HVO (synthetic hydrocarbon biofuel (SHB)) fuel. Our findings indicate that particulate emissions of each type of biodiesel fuel induce cytotoxic effects in BEAS-2B and A549 cells, manifested as cell death (apoptosis or necrosis), decreased protein concentrations, intracellular ROS production, as well as increased expression of antioxidant genes and genes coding for DNA damage-response proteins. The different biodiesel blend percentages and biodiesel feedstocks led to marked differences in chemical composition of the emitted DEP. The different DEPs also displayed statistically significant differences in cytotoxicity in A549 and BEAS-2B cells, but the magnitude of these variations was limited. Overall, it seems that increasing biodiesel blend concentrations from the current 7 to 20% FAME, or substituting 1st-generation FAME biodiesel with 2nd-generation HVO biodiesel (at least below 20% blends), affects the in vitro toxicity of the emitted DEP to some extent, but the biological significance of this may be moderate.
منابع مشابه
Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels—the FuelHealth project
Epidemiological data indicate that exposure to diesel exhaust particles (DEPs) from traffic emissions is associated with higher risk of morbidity and mortality related to cardiovascular and pulmonary diseases, accelerated progression of atherosclerotic plaques, and possible lung cancer. While the impact of DEPs from combustion of fossil diesel fuel on human health has been extensively studied, ...
متن کاملComparative analysis of jatropha and karanja-based biodiesel properties, performance and exhaust emission characteristics in an unmodified diesel engine
An ever-increasing drift of energy consumption, unequal geographical distribution of natural wealth and the quest for low carbon fuel for a cleaner environment are sparking the production and use of biodiesels in many countries around the globe. In this work, jatropha and karanja biodiesels were produced from the respective crude vegetable oils through transesterification, and the different phy...
متن کاملComparative analysis of jatropha and karanja-based biodiesel properties, performance and exhaust emission characteristics in an unmodified diesel engine
An ever-increasing drift of energy consumption, unequal geographical distribution of natural wealth and the quest for low carbon fuel for a cleaner environment are sparking the production and use of biodiesels in many countries around the globe. In this work, jatropha and karanja biodiesels were produced from the respective crude vegetable oils through transesterification, and the different phy...
متن کاملInvestigation of Blended Palm Biodiesel-Diesel Fuel Properties with Water Emulsification
Under the crisis of global warming and drastic climate changing, carbon-neutral renewable energy is considerably proposed as a feasible clean alternative energy to fractionally replace fossilized fuel. To cop up with ever stringent emission regulations, researchers have investigated different types of renewable fuels like biodiesel and water emulsion. The fuel physical characteristics are among...
متن کاملInvestigation of injection timing and different fuels on the diesel engine performance and emissions
Start of fuel injection and fuel type are two important factors affecting engine performance and exhaust emissions in internal combustion engines. In the present study, a one-dimensional computational fluid dynamics solution with GT-Power software is used to simulate a six-cylinder diesel engine to study the performance and exhaust emissions with different injection timing and alternative fuels...
متن کامل